精英家教网 > 高中数学 > 题目详情
11.已知数列{an} 满足a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),则a1a2a3…a2010 的值为-6.

分析 根据递推公式依次求出a2、a3、a4、a5,归纳出规律求出数列的周期,根据数列的周期性求出式子的值.

解答 解:∵a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),
∴a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=-3,同理可求a3=$-\frac{1}{2}$,a4=$\frac{1}{3}$,a5=2…,
∴数列{an}的周期为4,且a1a2a3a4=1,
∴a1a2a3a4…a2009a2010=a1a2=2×(-3)=-6,
故答案为:-6.

点评 本题考查数列的递推式的应用,归纳出周期是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线上的一点A到其右焦点F的距离等于2,抛物线y2=2px(p>0)过点A,则该抛物线的方程为(  )
A.y2=2xB.y2=xC.y2=$\frac{1}{2}$xD.y2=$\frac{1}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈(0,$\frac{π}{2}$),sinx<tanx,则(  )
A.p是真命题:¬p:?x0∈(0,$\frac{π}{2}$),sinx0>tanx0
B.p是真命题:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
C.p是假命题:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
D.p是真命题:¬p:?x0∈(0,$\frac{π}{2}$),sinx0≥tanx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x,y的不等式组$\left\{\begin{array}{l}{x≤0}\\{x+2y≥0}\\{kx-y+1≥0}{\;}\end{array}\right.$(k≠0)表示的平面区域形状是直角三角形,则该区域的面积为(  )
A.$\frac{1}{4}$B.$\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{-{x}^{2}-2x+8}$+4的值域是[4,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知直线l:y=kx+2与抛物线C:x2=2py(p>0)交于A、B两点,O为坐标原点,$\overrightarrow{OA}$+$\overrightarrow{OB}$=(4,12).
(1)求直线l的方程和抛物线C的方程;
(2)若抛物线C上一动点P从A到B运动时(P不与A、B重合),求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在数列{an}中,a1=1,an+2+(-1)nan=1,则数列{an}的前100项之和为1300.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不恒为0的函数f(x)和g(x)分别是R上偶函数和奇函数,则下列结论:①|f(x)|-g(x)是奇函数;②|f(x)|+g(x)是偶函数;③f(x)-|g(x)|是奇函数;④f(x)+|g(x)|是偶函数,其中恒成立的是④(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的值域:
(1)y=$\sqrt{x}$-1;(2)y=$\frac{5x-1}{4x+2}$;(3)y=5-x+$\sqrt{3x-1}$;(4)y=$\frac{3x}{{x}^{2}+4}$;(5)y=|x+1|+|x-2|

查看答案和解析>>

同步练习册答案