精英家教网 > 高中数学 > 题目详情
(2013•济南一模)函数y=sin(
π2
x+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,则tan∠APB=
-2
-2
分析:利用函数的解析式求出A,通过函数的周期求出AB,然后利用两角和的正切函数求解即可.
解答:解:由题意作PN⊥x轴于N,由函数的解析式可知:A=1即PN=1,
设∠APN=α,∠NPB=β;
因为函数的周期T=AB=
π
2
=4,所以AN=1,NB=3,
所以tanα=1,tanβ=3;
所以tan∠APB=tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
1+3
1-1×3
=-2.
故答案为:-2.
点评:本题考查三角函数的解析式的应用,两角和的正切函数的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南一模)“a=1”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x-y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)等差数列{an}中,a2+a8=4,则它的前9项和S9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知抛物线y2=4x的焦点F恰好是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点,且渐近线方程为y=±
3
x,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

同步练习册答案