精英家教网 > 高中数学 > 题目详情

等差数列{an}中,a5+a7=4,a6+a8=-2,则数列{an}前n项和Sn最大时n的值为


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    8
B
分析:求Sn最大值可从两个方面考虑:
法一是函数方面,等差数列的前n项和是不含常数的二次函数,利用二次函数性质求解,要注意n∈N*
法二是从Sn的最大值的意义入手,即所以正数项的和最大,故只需通项公式来寻求an≥0,an+1≤0的n.
解答:∵a5+a7=2a6=4,a6+a8=2a7=-2,
(法一)∴a6=2,a7=-1,
∴d=a7-a6=-1-2=-3,
∴a6=a1+5d=a1-15=2,
∴a1=17,
∴Sn=,n∈N*
则当n=6时Sn最大;
(法二)∴a6=2>0,a7=-1<0,
当n=6时,S6最大.
故选B
点评:本题主要考查了等差数列的和的最值的求解,由于数列是一类特殊的函数,在有关最值的求解中,要善于利用这一性质进行求解,但要注意n为正整数的限制条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案