精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)
x1-x2
>0则
(1)f(2009)=______;
(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是______.
由题意,(1)因为y=f(x)是R上的偶函数,所以f(x)=f(-x),因为f(x+6)=f(x)+f(3),
所以f(-x+6)=f(-x)+f(3)=f(x)+3=f(x+6),所以f(x)关于x=6对称,
因为f(6-x)=f(6+x),所以f(-x)=f(x+12)=f(x),所以f(x)是以12为周期的函数,
∴f(2009)=f(5)=f(-5)=-1;
 (2)根据当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)
x1-x2
>0,可知函数在[0,3]上单调递增
又f(x)为偶函数,故在[-3,0]上为减函数.
令x=-3,则由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0
因为f(x+6)=f(x)+f(3),所以f(3)=f(-3)+f(3)=0,f(x)关于x=6对称,所以f(9)=0,因为y=f(x)是R上的偶函数,f(-9)=0,f(-3)=0,因 为f(x)在[0,3]上是增函数,所以[0,3]上只有一解为3,对称性[-3,0]只有一解为-3,因为f(x+6)=f(x)+f(3),且f(x)在[0,3]上是增函数,所以f(x)在[6,9]上是增函数,所以[6,9]上只有一解为9,因为f(x)关于x=6对称,所以f(x)在[3,6]上只有一解为3,由对称性知[-9,-6],[-6,-3]各只有一解-9,-3,
要使方程f(x)=0在区间[a,6-a]上恰有3个不同实根,则a>-9,6-a≤9
∴实数a的取值范围是(-9-3]
故答案为-1,(-9-3]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

17、定义在R上的偶函数y=f(x)满足:
①对任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③当x∈(-1,0)时,都有f(x)<0.
若方程f(x)=0在区间[a,3]上恰有3个不同实根,则实数a的取值范围是
(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)满足:①对x∈R都有f(x+6)=f(x)+f(3);②当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0
,若方程f(x)=0在区间[a,8-a]上恰有3个不同实根,实数a的取值范围是
(-7,-3)
(-7,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数f(x)的一个零点为-
1
2
,求满足f(log
1
9
x)≥0的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈(0,1]时单调递增,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f (x)满足f ( x+2 )=-f (x)对所有实数x都成立,且在[-2,0]上单调递增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),则a,b,c的由大到小顺序是(用“>”连 结)
 

查看答案和解析>>

同步练习册答案