精英家教网 > 高中数学 > 题目详情
19.设A、B为抛物线y2=2px(p>0)上相异两点,则$|\overrightarrow{OA}+\overrightarrow{OB}{|^2}-|\overrightarrow{AB}{|^2}$的最小值为(  )
A.-4p2B.-3p2C.-2p2D.-p2

分析 设A(xA,yA),B(xB,yB).则$|\overrightarrow{OA}+\overrightarrow{OB}{|^2}-|\overrightarrow{AB}{|^2}=4({x_A}{x_B}+{y_A}{y_B})$,分类讨论,结合韦达定理,即可得出结论.

解答 解:设A(xA,yA),B(xB,yB).则$|\overrightarrow{OA}+\overrightarrow{OB}{|^2}-|\overrightarrow{AB}{|^2}=4({x_A}{x_B}+{y_A}{y_B})$,
若直线AB斜率存在,设为y=k(x-a),联立得k2x2-2(ak2+p)x+k2a2=0,
则${x_A}{x_B}={a^2}$,${y_A}{y_B}={k^2}({x_A}-a)({x_B}-a)=-2ap$.$|\overrightarrow{OA}+\overrightarrow{OB}{|^2}-|\overrightarrow{AB}{|^2}=4({a^2}-2ap)=4[{(a-p)^2}-{p^2}]≥-4{p^2}$.
若直线不存在,当${x_A}={x_B}=a\;,\;\;{y_A}=-{y_B}=\sqrt{2ap}$时上式也成立.故所求最小值为-4p2
当且仅当直线AB过点(p,0)时等号成立.
故选A.

点评 本题考查了抛物线的简单几何性质,考查了学生的计算能力,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.一个四棱锥的正视图,侧视图(单位:cm)如图所示,
(1)请画出该几何体的俯视图;
(2)求该几何体的体积;
(3)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式:
(1)|1-$\frac{2x-1}{3}$|≤2
(2)(2-x)(x+3)<2-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x(lnx-ax).
(1)a=$\frac{1}{2}$时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1,x2,求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$2\sqrt{2}sin(θ+\frac{π}{4})$,直线l与曲线C交于A、B两点,并与y轴交于点P.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知ABC-A1B1C1为直三棱柱,AB⊥BC,AA1=AB=BC,连接AB1交A1B于点E,
(1)求证:AE⊥A1C
(2)若A1A=2,求E到平面A1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用正奇数按如表排列
第1列第2列第3列第4列第5列
第一行1357
第二行1513119
第三行17192123
2725
则2017在第     行第      列.(  )
A.第253行第1列B.第253行第2列C.第252行第3列D.第254行第2列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0),焦点F($\frac{p}{2}$,0),如果存在过点M(x0,0)$({x_0}>\frac{p}{2})$的直线l与抛物线C交于不同的两点A、B,使得S△AOM=λ•S△FAB,则称点M为抛物线C的“λ分点”.
(1)如果M(p,0),直线l:x=p,求λ的值;
(2)如果M(p,0)为抛物线C的“$\frac{4}{3}$分点”,求直线l的方程;
(3)(普通中学做)命题甲:证明点M(p,0)不是抛物线C的“2分点”;
(重点中学做)命题乙:如果M(x0,0)$({x_0}>\frac{p}{2})$是抛物线的“2分点”,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以抛物线x2=4y的焦点F为圆心的圆交抛物线于A、B两点,交抛物线的准线于C、D两点,若四边形ABCD是矩形,则圆的方程为(  )
A.x2+(y-1)2=3B.x2+(y-1)2=4C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

同步练习册答案