(1)求实数b、c的值;
(2)判断F(x)=lgf(x)在x∈[-1,1]上的单调性,并给出证明.
解析:(1)由y=,知x∈R,去分母,整理得(2-y)x2+bx+c-y=0,(*)
当y-2≠0时,由x∈R有Δ=b2-4(2-y)(c-y)≥0,
即4y2-4(2+c)y+8c-b2≤0,由题设及二次不等式与方程的关系得2+c=1+3且=1×3,解之得b=±2,c=2,又b<0,
∴b=-2,c=2.
当y-2=0时,将b=-2,c=2代入(*)式得x=0,适合
∴b=-2,c=2为所求.
(2)F(x)在x∈[-1,1]上是减函数.
证明:设-1≤x1<x2≤1,
则F(x2)-F(x1)=lg
=lg
=lg.
而(x22-x2+1)(x12+1)-(x12-x1+1)(x22+1)
=x1x2(x2-x1)-(x2-x1)
=(x2-x1)(x1x2-1),
又∵x2>x1,∴x2-x1>0.
又|x1|≤1,|x2|≤1,由x1≠x2,
∴|x1||x2|≤1.
∴-1≤x1x2<1,∴x1x2-1<0.
∴0<(x22-x2+1)(x12+1)<(x12-x1+1)(x22+1).
∴0<<1.
∴F(x2)-F(x1)
=lg<0.
即F(x2)<F(x1),
故F(x)=lgf(x)在[-1,1]上是减函数.
科目:高中数学 来源: 题型:
|
1 |
π |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x-1 | x+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com