精英家教网 > 高中数学 > 题目详情

 已知向量,, 且,其中

 (1)求的值;

 (2)若,求的值

(1)解:∵,, 且

       ∴,即.                            …… 2分

       ∵ , 解得,

      ∴.                                    …… 6分

(2)解:∵,∴. ∵

       ∴ .                         …… 8分

    ∴.   … 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OP
=( 2cos(
π
2
+x) , -1 )
OQ
=( -sin(
π
2
-x) , cos2x )
,定义f(x)=
OP
OQ

(1)求函数f(x)的表达式,并求其单调区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(ωx+φ),2),
b
=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
)
,函数f(x)=(
a
+
b
)•(
a
-
b
)
的图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点A(1,
7
2
)

(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
1
2
3
2
),且存在实数x和y,使向量
m
=
a
+(x2-3)•
b
n
=-y
a
+x
b
,且
m
n

(Ⅰ)求函数y=f(x)的关系式,并求其单调区间和极值;
(Ⅱ)是否存在正数M,使得对任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤M成立?若存在求出M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定义f(x)=
m
n

(1)求函数f(x)的表达式,并求其单调增区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形OABC,其对角线为OB,AC,M,N分别是边OA,CB的中点,点G在线段MN上,且使MG=2GN,
用向量
OA
OB
OC
表示向量
OG
 

查看答案和解析>>

同步练习册答案