【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,左顶点为
,左焦点为
,点
在椭圆
上,直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)以
为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
【答案】(Ⅰ)
;(Ⅱ)经过两定点
,
.
【解析】试题分析:(Ⅰ)椭圆的左焦点为
,所以
.由点
在椭圆
上,得
,进而解出
得到椭圆
的方程;(Ⅱ)直线
与椭圆
联立,解得
的坐标(用
表示),设出
,
的方程,解出
的坐标,圆方程用
表示,最后可求得
为直径的圆经过两定点.
试题解析:(Ⅰ) 设椭圆
的方程为
,
因为椭圆的左焦点为
,所以
.
因为点
在椭圆
上,所以
.
由①②解得,
,
.
所以椭圆
的方程为
.
(Ⅱ)因为椭圆
的左顶点为
,则点
的坐标为
.
因为直线
与椭圆
交于两点
,
,
设点
(不妨设
),则点
.
联立方程组
消去
得
.
所以
,则
.
所以直线
的方程为
.
因为直线
,
分别与
轴交于点
,
,
令
得
,即点
.
同理可得点
.
所以
.
设
的中点为
,则点
的坐标为
.
则以
为直径的圆的方程为
,
即
.
令
,得
,即
或
.
故以
为直径的圆经过两定点
,
.
科目:高中数学 来源: 题型:
【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标
和
,制成下图,其中“*”表示男同学,“+”表示女同学.
![]()
若
,则认定该同学为“初级水平”,若
,则认定该同学为“中级水平”,若
,则认定该同学为“高级水平”;若
,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.
(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;
(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;
(Ⅲ)试比较这100名同学中,男、女生指标
的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB为直径在△ABC外作半圆O,P为半圆弧AB上的动点,点Q在斜边BC上,若
=
,则
的最小值为_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形
沿对角线
折成直二面角,下列结论:①
与
所成的角为
:②
与
所成的角为
:③
与面
所成角的正弦值为
:④二面角
的平面角正切值是
:其中正确结论的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
正方形
所在平面,M是
的中点,二面角
的大小为
.
![]()
(1)设l是平面
与平面
的交线,证明
;
(2)在棱
是否存在一点N,使
为
的二面角.若不存在,说明理由:若存在,求
长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,
轴为极轴建立极坐标系,曲线
的方程为
(
为参数),曲线
的极坐标方程为
,若曲线
与
相交于
、
两点.
(1)求
的值;
(2)求点
到
、
两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃),对某种鸡的时段产蛋量
(单位:
)和时段投入成本
(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
![]()
|
|
|
|
|
|
|
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中
.
(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,建立
关于
的回归方程;
(3)已知时段投入成本
与
的关系为
,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有有线性相关关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为![]()
②
|
|
|
|
|
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列
,若正整数
,使得当
时,有
,则称
为“
不减数列”.
(1)设
,
均为正整数,且
,甲:
为“
不减数列”,乙:
为“
不减数列”.试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数
与函数
的图象关于直线
对称,数列
满足
,
,如果
为“
不减数列”,试求
的最小值;
(3)对于(2)中的
,设
,且
.是否存在实数
使得
为“
不减数列”?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com