【题目】正方形
沿对角线
折成直二面角,下列结论:①
与
所成的角为
:②
与
所成的角为
:③
与面
所成角的正弦值为
:④二面角
的平面角正切值是
:其中正确结论的个数为( )
A.4B.3C.2D.1
科目:高中数学 来源: 题型:
【题目】已知抛物线
,点
与抛物线
的焦点
关于原点对称,过点
且斜率为
的直线
与抛物线
交于不同两点
,线段
的中点为
,直线
与抛物线
交于两点
.
(Ⅰ)判断是否存在实数
使得四边形
为平行四边形.若存在,求出
的值;若不存在,说明理由;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C. 垂直于同一条直线的两条直线相互垂直
D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点为
,离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
,求证:在
轴上存在点
,使得无论非零实数
怎样变化,总有
为直角,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,左顶点为
,左焦点为
,点
在椭圆
上,直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)以
为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com