【题目】已知椭圆
的左顶点为
,离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
,求证:在
轴上存在点
,使得无论非零实数
怎样变化,总有
为直角,并求出点
的坐标.
科目:高中数学 来源: 题型:
【题目】已知直线
,
,过点
的直线
分别与直线
,
交于
,其中点
在第三象限,点
在第二象限,点
;
(1)若
的面积为
,求直线
的方程;
(2)直线
交于
点
,直线
交
于点
,若
直线的斜率均存在,分别设为
,判断
是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形
沿对角线
折成直二面角,下列结论:①
与
所成的角为
:②
与
所成的角为
:③
与面
所成角的正弦值为
:④二面角
的平面角正切值是
:其中正确结论的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.
![]()
(Ⅰ)求这些产品质量指标值落在区间
内的频率;
(Ⅱ)用分层抽样的方法在区间
内抽取一个容量为6的样本,将该样本看成一个总体,从中任意
抽取2件产品,求这2件产品都在区间
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,
轴为极轴建立极坐标系,曲线
的方程为
(
为参数),曲线
的极坐标方程为
,若曲线
与
相交于
、
两点.
(1)求
的值;
(2)求点
到
、
两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
、
分别是
、
的中点.
![]()
(1)设棱
的中点为
,证明:
平面
;
(2)若
,
,
,且平面
平面
.
(i)求三棱柱
的体积
;
(ii)求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com