【题目】已知函数f(x)=
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.
【答案】(1)[-1,+∞);(2)(-∞,2-
]∪(1,3)∪[2+
,+∞).
【解析】试题分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k与﹣
的取值范围,从而可求出k的取值范围,然后解不等式可求出曲线C的切点的横坐标取值范围.
解析:
(1)由题意得f′(x)=x2-4x+3,则f′(x)=(x-2)2-1≥-1,
即过曲线C上任意一点切线斜率的取值范围是[-1,+∞).
(2)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知, ![]()
解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,
得x∈(-∞,2-
]∪(1,3)∪[2+
,+∞)
科目:高中数学 来源: 题型:
【题目】数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图象如图,M是图象的一个最低点,图象与x轴的一个交点的坐标为
,与y轴的交点坐标为
.
![]()
(1)求A,
,
的值;
(2)若关于x的方程
在
上有一解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:
![]()
根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
![]()
(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记
为选出的两人中甲大学的人数,求
的分布列和数学期望
;
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值
与
的大小,及方差
与
的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为
,首次改良后所排放的废气中含有的污染物数量为
.设改良工艺前所排放的废气中含有的污染物数量为
,首次改良工艺后所排放的废气中含有的污染物数量为
,则第n次改良后所排放的废气中的污染物数量
,可由函数模型
给出,其中n是指改良工艺的次数.
(1)试求改良后所排放的废气中含有的污染物数量的函数模型;
(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过
,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.
(参考数据:取
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是偶函数
(1)求k的值;
(2)若函数
的图象与直线
没有交点,求b的取值范围;
(3)设
,若函数
与
的图象有且只有一个公共点,求实数
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的
缴纳,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企业员工甲在2014年至2018年各年中每月所撒纳的养老保险数额y(单位:元)与年份序号t的统计如下表:
(1)求出t关于t的线性回归方程
;
(2)试预测2019年该员工的月平均工资为多少元?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
(注:
,
,其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com