【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:
根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望;
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值与的大小,及方差与的大小.(只需写出结论)
【答案】(Ⅰ)0.65;(Ⅱ)见解析;(Ⅲ)见解析.
【解析】试题分析:(1)先根据频率等于对应区间小长方形面积得“爱好”中华诗词的频率,再根据频数等于总数乘以频数,最后根据古典概率公式求概率(2)先确定“痴迷”的学生人数,确定随机变量取法,再分别根据组合数求对应概率,列表可得对应分布列,最后根据数学期望公式求期望(3)根据频率分布直方图可得甲平均值在区间[20,30],乙平均值在区间[30,40],甲数据比乙数据分散,所以可得均值与方差大小
试题解析:(Ⅰ) 由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为,
所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为.
(Ⅱ) 甲大学随机选取的40名学生中“痴迷”的学生有人,
乙大学随机选取的40名学生中“痴迷”的学生有人,
所以,随机变量的取值为.
所以, ,
,
.
所以的分布列为
0 | 1 | 2 | |
P |
的数学期望为 .
(Ⅲ) ;
科目:高中数学 来源: 题型:
【题目】【2018河南安阳市高三一模】如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)动直线穿过区域,分别交直线于两点,若直线与轨迹有且只有一个公共点,求证: 的面积恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为
A. 4 B. 12 C. 16 D. 64
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来,北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收入快速增长,人民生活品质不断提升.下图是北京市2012-2016年城乡居民人均可支配收入实际增速趋势图(例如2012年,北京城镇居民收入实际增速为,农村居民收入实际增速为).
(1)从2012-2016五年中任选一年,求城镇居民收入实际增速大于的概率;
(2)从2012-2016五年中任选两年,求至少有一年农村和城镇居民收入实际增速均超过的概率;
(3)由图判断,从哪年开始连续三年农村居民收入实际增速方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为(为参数).
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设为曲线上任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中, 平面, .过的平面交于点,交于点.
(l)求证: 平面;
(Ⅱ)求证: ;
(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线过点且与交于两点,当与的面积之和取得最小值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在轴上截得的弦长为.
(1)求动圆的圆心点的轨迹方程;
(2)过点的动直线与曲线交于两点,平面内是否存在定点,使得直线分别交于两点,使得直线的斜率,满足?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取100名学生,测得他们的身高(单位: ),按照区间,
分组,得到样本身高的频率分布直方图(如图).
(1)求频率分布直方图中的值及身高在以上的学生人数;
(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;
(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com