【题目】已知动圆过定点,且在轴上截得的弦长为.
(1)求动圆的圆心点的轨迹方程;
(2)过点的动直线与曲线交于两点,平面内是否存在定点,使得直线分别交于两点,使得直线的斜率,满足?若存在,请求出点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:
根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :
(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;
(Ⅱ)从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望;
(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值与的大小,及方差与的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(Ⅰ)求点的轨迹方程;
(Ⅱ)过的直线与点的轨迹交于两点,过作与垂直的直线与点的轨迹交于两点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.
(1)求甲拿到礼物的概率;
(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合, 交圆于两点,过作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线, ,则下列说法正确的是( )
A. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,平面底面, ,点分别是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证: 平面;
(Ⅲ)在棱上求作一点,使得,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com