【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.
(1)求甲拿到礼物的概率;
(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.
科目:高中数学 来源: 题型:
【题目】设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零,记为所有这样的数表组成的集合,对于,记为的第行各数之和(剟 ),为的第列各数之和(剟),记为, , , , , , , 中的最小值.
()对如下数表,求的值.
()设数表形如:
求的最大值.
()给定正整数,对于所有的,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中, 平面, .过的平面交于点,交于点.
(l)求证: 平面;
(Ⅱ)求证: ;
(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在轴上截得的弦长为.
(1)求动圆的圆心点的轨迹方程;
(2)过点的动直线与曲线交于两点,平面内是否存在定点,使得直线分别交于两点,使得直线的斜率,满足?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中为自然对数的底数.
(1)若曲线在轴上的截距为,且在点处的切线垂直于直线,求实数的值;
(2)记的导函数为, 在区间上的最小值为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是平行四边形, , 平面底面,且是边长为的等边三角形, , 是 中点.
(1)求证:平面平面;
(2)证明: , 且与的面积相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列, , , 满足,且当时, ,令.
(Ⅰ)写出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com