精英家教网 > 高中数学 > 题目详情

【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.

(1)求甲拿到礼物的概率;

(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.

【答案】(1),(2)见解析

【解析】试题分析:(1)甲拿到礼物的事件为A,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,由此利用相互独立事件概率乘法公式能求出甲拿到礼物的概率.

(2)随机变量ξ的所有可能取值是1,2,3,4,分别求出相应的概率,由此能求出随机变量ξ的概率分布列及数学期望

试题解析:

(1)甲拿到礼物的事件为

在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,

答:甲拿到礼物的概率为

(2)随机变量的所有可能取值是1,2,3,4.

随机变量的概率分布列为:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是由个实数组成的列的数表,满足:每个数的绝对值不大于,且所有数的和为零,记为所有这样的数表组成的集合,对于,记的第行各数之和( ),的第列各数之和(),记 中的最小值.

)对如下数表,求的值.

)设数表形如:

的最大值.

)给定正整数,对于所有的,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 .过的平面交于点,交于点.

(l)求证: 平面

(Ⅱ)求证:

(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在四棱锥平面平面底面是正方形 .

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且在轴上截得的弦长为.

(1)求动圆的圆心点的轨迹方程

(2)过点的动直线与曲线交于两点,平面内是否存在定点,使得直线分别交两点,使得直线的斜率,满足?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数f(x)=e2xaln x.

(1)讨论f(x)的导函数f′(x)零点的个数;

(2)证明:当a>0时,f(x)≥2aaln.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

(1)若曲线轴上的截距为,且在点处的切线垂直于直线,求实数的值;

(2)记的导函数为 在区间上的最小值为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是平行四边形, , 平面底面,且是边长为的等边三角形, 点.

(1)求证:平面平面

(2)证明: , 且的面积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 满足,且当时, ,令

)写出的所有可能的值.

)求的最大值.

)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.

查看答案和解析>>

同步练习册答案