精英家教网 > 高中数学 > 题目详情

【题目】随机抽取100名学生,测得他们的身高(单位: ),按照区间

分组,得到样本身高的频率分布直方图(如图).

(1)求频率分布直方图中的值及身高在以上的学生人数;

(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;

(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.

【答案】(1)0.0660(2)3,2,1(3)

【解析】试题分析:(1)根据频率分布直方图中所有小长方形面积和为1得x,再根据频数等于频率乘以总数可得身高在以上的学生人数;(2)根据分层抽样确定从组中每组各抽取人数,(3)利用枚举法确定总事件数,从中挑出满足条件事件数,最后根据古典概型概率公式求概率

试题解析:(1)由频率分布直方图可知

所以

身高在以上的学生人数为

(人)

(2)三组的人数分别为30人,20人,10人.

因此应该从组中每组各抽取

(人),(人),(人),

(3)在(2)的条件下,设组的3位同学为 组的2位同学为 组的1位同学为,则从6名学生中抽取2人有15种可能:

, , ,

其中组的2位学生至少有1人被抽中有9种可能:

.

所以组中至少有1人被抽中的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

(Ⅰ)从甲大学中随机选出一名学生试估计其“爱好”中华诗词的概率;

()从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望

()试判断选出的这两组学生每天学习“中华诗词”时间的平均值的大小,及方差的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合, 交圆两点,过的平行线交于点.

(1)证明为定值,并写出点的轨迹方程;

(2)设,过点作直线,交点的轨迹于两点 (异于),直线的斜率分别为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点与抛物线 的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆两点,点,且为定值.

(1)求椭圆的方程;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是正三角形, 是等腰三角形,

(1)求证:

(2)若 ,平面平面,直线与平面所成的角为45°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面底面, ,点分别是的中点.

)求证: 平面;

)求证: 平面;

)在棱上求作一点,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是海面上位于东西方向相距海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时。求救援船直线到达D的时间和航行方向.

查看答案和解析>>

同步练习册答案