精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是海面上位于东西方向相距海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号.位于B点南偏西60°且与B相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时。求救援船直线到达D的时间和航行方向.

【答案】1小时,救援船的航行方向是北偏东30°的方向.

【解析】解:由题意知AB5(3)海里,

∠DBA90°60°30°∠DAB90°45°45°

∴∠ADB180°(45°30°)105°

ADB中,由正弦定理得

DB10 (海里)

DBCDBAABC30°(90°60°)60°BC20 (海里)

△DBC中,由余弦定理得

CD2BD2BC22BD·BC·cosDBC30012002×10×20×900

CD30(海里),则需要的时间t1(小时)

答:救援船到达D点需要1小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机抽取100名学生,测得他们的身高(单位: ),按照区间

分组,得到样本身高的频率分布直方图(如图).

(1)求频率分布直方图中的值及身高在以上的学生人数;

(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;

(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下面的流程图进行计算.若输出的,则输入的正实数值的个数最多为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(Ⅰ)当处切线的斜率为,求的值;

(Ⅱ)在(Ⅰ)的前提下,求的极值;

(Ⅲ)若个不同零点,求的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班为了活跃元旦晚会气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.

(1)求甲获得奖品的概率;

(2)设为甲参加游戏的轮数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),且是它的极值点.

(1)求的值;

(2)求上的最大值;

(3)设,证明:对任意 都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某百货商场举行年终庆典,推出以下两种优惠方案:

方案一:单笔消费每满200元立减50元,可累计;

方案二:单笔消费满200元可参与一次抽奖活动,抽奖规则如下:从装有6个小球(其中3个红球3个白球,它们除颜色外完全相同)的盒子中随机摸出3个小球,若摸到3个红球则按原价的5折付款,若摸到2个红球则按原价的7折付款,若摸到1个红球则按原价的8折付款,若未摸到红球按原价的9折付款。

单笔消费不低于200元的顾客可从中任选一种优惠方案。

I)某顾客购买一件300元的商品,若他选择优惠方案二,求该顾客最好终支付金额不超过250元的概率。

II)若某顾客的购物金额为210元,请用所学概率知识分析他选择哪一种优惠方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

查看答案和解析>>

同步练习册答案