分析 (1)赋值,利用奇函数的定义,即可得出f(x)是奇函数;
(2)由f(x1)+f(x2)=f($\frac{{x}_{1}+{x}_{2}}{1+{x}_{1}{x}_{2}}$),f($\frac{1}{2}$)=1,得f($\frac{1}{2}$)+f($\frac{1}{2}$)=f($\frac{4}{5}$)=2,即可求f($\frac{13}{14}$)的值.
解答 解:(1)f(x)的定义域为(-1,1).
∵f(x1)+f(x2)=f($\frac{{x}_{1}+{x}_{2}}{1+{x}_{1}{x}_{2}}$),
∴f(0)+f(0)=f(0),
∴f(0)=0,
∴f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
∴f(x)是奇函数;
(2)∵f(x1)+f(x2)=f($\frac{{x}_{1}+{x}_{2}}{1+{x}_{1}{x}_{2}}$),f($\frac{1}{2}$)=1,
∴f($\frac{1}{2}$)+f($\frac{1}{2}$)=f($\frac{4}{5}$)=2
∴f($\frac{1}{2}$)+f($\frac{4}{5}$)=f($\frac{13}{14}$)=3.
点评 本题考查函数的奇偶性,考查函数值的计算,考查赋值法,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -144 | B. | -136 | C. | -57 | D. | 34 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com