精英家教网 > 高中数学 > 题目详情
14.已知x=1是不等式k2x2-6kx+8≥0的解,则k的取值范围是k≥4或k≤2.

分析 根据题意,把x=1代入不等式k2x2-6kx+8≥0中,求关于x的不等式解集即可.

解答 解:x=1是不等式k2x2-6kx+8≥0的解,
∴k2•12-6k•1+8≥0,
即k2-6k+8≥0,解得k≥4或k≤2,
∴k的取值范围是k≥4或k≤2.
故答案为:k≥4或k≤2.

点评 本题考查了一元二次不等式的解集问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x2-2x-1,x∈[-3,2]的最大值、最小值分别为(  )
A.14,-2B.14,-1C.2,-2D.7,-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2-bc,a=4,则△ABC的外接圆半径为(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平面直角坐标系中点A(1,-1),B(4,0),C(2,2),平面区域D由所有满足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$($1<λ≤\frac{3}{2}$,1<μ≤b)的点P(x,y)组成的区域,若区域D的面积为8,则b的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中正确的是(  )
A.经过两条平行直线,有且只有一个平面
B.如果两条直线平行于同一个平面,那么这两条直线平行
C.三点确定唯一一个平面
D.如果一个平面内不共线的三个点到另一平面的距离相等,则这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanx=2,则$\frac{6sin2x+2cos2x}{cos2x-3sin2x}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.与点A(-3,2),B(1,1)的距离均为2的直线共有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将曲线C按伸缩变换公式$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$变换得曲线方程为x2+y2=1,则曲线C的方程为4x2+9y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,则该几何体的体积为4$\sqrt{3}$+1.

查看答案和解析>>

同步练习册答案