精英家教网 > 高中数学 > 题目详情
下列函数中,在定义域内是单调递增函数的是(     )
A.B.C.D.
A

试题分析:A选项是指数函数,定义域为,底数大于1,所以在定义域内是单调增函数。故选A。B选项是反比例函数,定义域为,由反比例函数图像可知当时,函数都为单调递减,所以排除B。C选项是二次函数,定义域为,由图像可知在时,函数为单调递减所以排除C。D选项是正切函数,定义域为,正切函数是在每一个区间都是单调递增的,但在整个定义域内并不是单调递增的,例如:令,取,则,但是,显然。这说明在每一个
都是单调递增的与在整个定义域内并不是单调递增的含义是不同的,所以排除D。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数.
(1)若,函数在区间上是单调递增函数,求实数的取值范围;
(2)设,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数及二次函数满足:.
(1)求的解析式;
(2)对于,均有成立,求的取值范围;
(3)设,讨论方程的解的个数情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(
1
2x-1
+
1
2
)•x

(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(   )
A.y=B.y=
C.y=-x2+2 D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)判断的奇偶性;
(2)讨论的单调性;
(3)当时,恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=|x|x+bx+c,则下列命题中,真命题的序号有________.
(1)当b>0时,函数f(x)在R上是单调增函数;
(2)当b<0时,函数f(x)在R上有最小值;
(3)函数f(x)的图像关于点(0,c)对称;
(4)方程f(x)=0可能有三个实数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在区间(0,+∞)上是减函数,那么的大小关系是(      ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案