精英家教网 > 高中数学 > 题目详情
现有若干枚形状完全相同的硬币,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝码),将略重的那枚硬币找出来.小王的方案是:首先任取两枚放在天平两侧进行称量,若天平不平衡,则重的那边为略重的那枚硬币:若天干平衡,将两枚都取下,从剩下的硬币中再任取两枚放在天平两侧进行称量,如此进行下去,直到找到那枚略重的硬币为止.若小王恰好在第一次就找出略重的那枚硬币的概率为
(I )请问共有多少枚硬币?
(II)设ξ为找到略重那枚硬币时己称量的次数,求ξ的分布列和数学期望.
【答案】分析:(I)根据小王恰好在第一次就找出略重的那枚硬币的概率为建立等式,解之即可;
(II)ξ的取值为1,2,3,4,然后根据等可能事件的概率公式分别求出相应的概率,列出分布列,最后利用数学期望公式解之即可.
解答:解:(Ⅰ)设共有n枚硬币,根据题意得
P1==,解得n=9.…(2分)
(Ⅱ)ξ=1,2,3,4,
P(ξ=1)==,P(ξ=2)==,P(ξ=3)==
P(ξ=4)==.…(10分)
∴ξ的分布列为
ξ1234
P
∴Eξ=1×+2×+3×+4×=.…(12分)
点评:本题主要考查了离散型随机变量及其分布列和数学期望,以及等可能事件的概率,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现有若干颗形状完全相同的玻璃球,已知其中一颗略重,其余各颗重量均相同,要求
使用天平(不用砝码)将略重的那颗玻璃球找出来.小龙的方案是:首先任取两颗放在天平的两侧进行称量,若天平不平衡,则重的那边为略重的那颗玻璃球,若天平平衡,则两颗都取下,从剩下的玻璃球中再任取两颗放在天平两侧进行称量,如此进行下去,直到找到那颗略重的玻璃球为止.若小龙恰好在第一次就找出略重的那颗玻璃球的概率为
27

(1)请问共有多少颗玻璃球?
(2)设ξ为找到略重的那颗玻璃球时已称量的次数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)现有若干枚形状完全相同的硬币,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝码),将略重的那枚硬币找出来.小王的方案是:首先任取两枚放在天平两侧进行称量,若天平不平衡,则重的那边为略重的那枚硬币:若天干平衡,将两枚都取下,从剩下的硬币中再任取两枚放在天平两侧进行称量,如此进行下去,直到找到那枚略重的硬币为止.若小王恰好在第一次就找出略重的那枚硬币的概率为
29

(I )请问共有多少枚硬币?
(II)设ξ为找到略重那枚硬币时己称量的次数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有若干颗形状完全相同的玻璃球,已知其中一颗略重,其余各颗重量均相同,要求
使用天平(不用砝码)将略重的那颗玻璃球找出来.小龙的方案是:首先任取两颗放在天平的两侧进行称量,若天平不平衡,则重的那边为略重的那颗玻璃球,若天平平衡,则两颗都取下,从剩下的玻璃球中再任取两颗放在天平两侧进行称量,如此进行下去,直到找到那颗略重的玻璃球为止.若小龙恰好在第一次就找出略重的那颗玻璃球的概率为数学公式
(1)请问共有多少颗玻璃球?
(2)设ξ为找到略重的那颗玻璃球时已称量的次数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:绵阳一模 题型:解答题

现有若干枚形状完全相同的硬币,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝码),将略重的那枚硬币找出来.小王的方案是:首先任取两枚放在天平两侧进行称量,若天平不平衡,则重的那边为略重的那枚硬币:若天干平衡,将两枚都取下,从剩下的硬币中再任取两枚放在天平两侧进行称量,如此进行下去,直到找到那枚略重的硬币为止.若小王恰好在第一次就找出略重的那枚硬币的概率为
2
9

(I )请问共有多少枚硬币?
(II)设ξ为找到略重那枚硬币时己称量的次数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案