精英家教网 > 高中数学 > 题目详情
2.正三棱柱被一个平面截去一部分后与半圆柱组成一个几何体,该几何体的三视图如图所示,则该几何体的体积为(  )
A.$2π+\sqrt{3}$B.$π+\sqrt{3}$C.$π+\frac{{4\sqrt{3}}}{3}$D.$π+\frac{{2\sqrt{3}}}{3}$

分析 根据几何体的三视图,得出该几何体是四棱锥与半圆柱的组合体,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得该几何体是四棱锥与半圆柱的组合体,
且四棱锥的底面是边长为2的正方形,侧面有两个全等的等腰直角三角形,
一个边长为2的等边三角形,一个为底面边长是2的等腰三角形,
半圆柱的底面直径为2,高为2,如图所示;
则该几何体的体积为V=$\frac{1}{2}•π•{1}^{2}•2+\frac{1}{3}•4•\sqrt{3}$=$π+\frac{4\sqrt{3}}{3}$
故选:C.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2lnx-x2
(1)求函数y=f(x)在区间$[\frac{1}{e},e]$的最值;(e为自然对数的底数)
(2)如果函数g(x)=f(x)-ax的图象与x轴交于两点A(x1,0),B(x2,0)且0<x1<x2,求证:${g^/}(\frac{{{x_1}+{x_2}}}{2})<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a=(1,-1),(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,那么$|{\overrightarrow b}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2sin2x,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再往上平移1个单位,得到函数y=g(x)的图象.对任意的a∈R,y=g(x)在区间[a,a+10π]上零点个数的所有可能值为(  )
A.20B.21C.20或21D.21或22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,$3({{{sin}^2}B+{{sin}^2}C-{{sin}^2}A})=2\sqrt{3}sinBsinC$,且△ABC的面积为$\sqrt{6}+\sqrt{2}$,则BC边上的高的最大值为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于集合A,B我们定义集合A×B={(a,b)|a∈A,b∈B},例如A={1,2},B={3,4},则有A×B={(1,3),(1,4),(2,3),(2,4)}据此定义回答下列问题:
(1)已知A×B={(1,2),(2,2)},求集合A,B;
(2)若A中有三个元素,B中有四个元素,试确定A×B中有几个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=l(a>b>0)与双曲线$\frac{x^2}{m^2}-\frac{y^2}{n^2}$=l=1(m>0,n>0)有相同的焦点F1(-c,O)和F2 (c,0),点P是椭圆与双曲线的一个交点,且∠F1PF2=$\frac{π}{2}$,若$\frac{1}{2}$a2是m2与c2的等差中项,则该椭圆的离心率是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)在R上可导,下列说法正确的是(  )
A.若f′(x)+f(x)>0,对任意x∈R恒成立,则有ef(2)<f(1)
B.若f′(x)-f(x)<0,对任意x∈R恒成立,则有e2f(-1)<f(1)
C.若f′(x)>1对任意x∈R恒成立,则有f(2)>f(1)
D.若f′(x)<1对任意x∈R恒成立,则有f(2)>f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数.若p∨q为真,p∧q为假.求实数a的取值范围.

查看答案和解析>>

同步练习册答案