精英家教网 > 高中数学 > 题目详情

【题目】“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:

男性

女性

合计

爱好

10

不爱好

8

合计

30

已知在这30人中随机抽取1人抽到爱好运动的员工的概率是.

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?

(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为,求的分布列、数学期望.参考数据:

0.10

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)没有把握认为爱好运动与性别有关; (2).

【解析】

(1)由题可算出爱好运动的人,即可完成列表,再利用公式求得即可得出结果;

(2)典型的超几何分布,利用公式求得概率,列出分布列,求得期望.

(1)

男性

女性

合计

爱好

10

6

16

不爱好

6

8

14

合计

16

14

30

由已知数据可求得:

所以没有把握认为爱好运动与性别有关.

(2)的取值可能为0,1,2,

.

所以的分布列为:

0

1

2

的数学期望为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的四棱锥, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )

A.∥平面B.平面∥平面

C.直线与直线所成角的大小为D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又有零点的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列两组数据:甲:1213111014.乙:1017101310.

1)分别计算两组数据的平均差,并根据计算结果判断哪组数据波动大.

2)分别计算两组数据的方差,并根据计算结果判断哪组数据波动大.

3)以上两种判断方法的结果是否一致?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系曲线的参数方程为为参数)以坐标原点为极点轴的正半轴为极轴建立极坐标系曲线的极坐标方程为.

)求曲线的极坐标方程和的直角坐标方程

直线与曲线分别交于第一象限内的两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:

甲:7869659974.

乙:9578768677.

1)分别计算甲、乙两人射击命中环数的极差、众数和中位数;

2)分别计算甲、乙两人射击命中环数的平均数、方差、标准差;

3)比较两人的成绩,然后决定选择哪一个人参赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ACBC,AC=BC=1,点P是△ABC内一点,则的取值范围是(  )

A. (﹣,0) B. (0, C. (﹣ D. (﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一容量为50的样本,数据的分组以及各组的频数如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出样本的频率分布表.

(2)画出频率分布直方图.

(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?

查看答案和解析>>

同步练习册答案