精英家教网 > 高中数学 > 题目详情

已知函数

见解析

解析试题分析:证明:设




因为,又,所以
,所以
所以
即得上为增函数.
考点:本题主要考查演绎推理的意义及方法,定义法证明函数单调性。
点评:明确推理格式,力求层次分明。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)当x>0时,证明不等式:<ln(x+1)<x;
(3)设f(x)的最小值为g(a),证明不等式:-1<ag(a)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数处取得极值2。
(Ⅰ)求函数的表达式;
(Ⅱ)当满足什么条件时,函数在区间上单调递增?
(Ⅲ)若图象上任意一点,直线与的图象切于点P,求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
定义在上的函数,对于任意的实数,恒有,且当时,
(1)求的值域。
(2)判断上的单调性,并证明。
(3)设,求的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数的一系列对应值如下表:

















(1)根据表格提供的数据求函数的解析式;
(2)根据(1)的结果,若函数周期为,求在区间上的最大、最小值及对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数为奇函数,为常数,
(1)求实数的值;
(2)证明:函数在区间上单调递增;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题12分)
已知函数.
(1)求的定义域;
(2)在函数的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当,b满足什么条件时,上恒取正值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围。

查看答案和解析>>

同步练习册答案