精英家教网 > 高中数学 > 题目详情

是否存在常数,使得等式对一切正整数都成立?若存在,求出的值;若不存在,说明理由.

,证明见解析


解析:

假设存在,使得所给等式成立.

代入等式得解得

以下用数学归纳法证明等式对一切正整数都成立.

(1)当时,由以上可知等式成立;

(2)假设当时,等式成立,即

则当时,

由(1)(2)知,等式结一切正整数都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}的前n和为Sn,且
Sn
1
4
与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若bn=
an
2n
,数列{bn}的前n项和为Tn,求Tn
(3)在(2)的条件下,是否存在常数λ,使得数列{
Tn
an+2
}
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式
f(x1)+f(x2)2
=M
,则称M为函数y=f (x)的“均值”.
(1)判断1是否为函数f(x)=2x+1(-1≤x≤1)的“均值”,请说明理由;
(2)若函数f(x)=ax2-2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;
(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)若数列满足,其中为常数,则称数列为等方差数列.已知等方差数列满足成等比数列且互不相等.

(Ⅰ)求数列的通项公式;

(Ⅱ)求数列的前项和;

    (Ⅲ)是否存在实数,使得对一切正整数,总有成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正项数列{an}的前n和为Sn,且
Sn
1
4
与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若bn=
an
2n
,数列{bn}的前n项和为Tn,求Tn
(3)在(2)的条件下,是否存在常数λ,使得数列{
Tn
an+2
}
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省株洲市三校联考高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知正项数列{an}的前n和为Sn,且与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若,数列{bn}的前n项和为Tn,求Tn
(3)在(2)的条件下,是否存在常数λ,使得数列为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

同步练习册答案