精英家教网 > 高中数学 > 题目详情
求函数y=Equation.3的值域和单调区间.

解析: 通过换元,令t=-x2+2x+3,是复合函数的问题.

解: 设t=-x2+2x+3,则t=-(x-1)2+4.?

为减函数,且0

∴y≥Equation.3=-2,即函数的值域为[-2,+∞).?

再由函数的定义域为-x2+2x+3>0,即-1

∴t=-x2+2x+3在(-1,1)上递增而在[1,3)上递减.

为减函数.?

∴函数的减区间为(-1,1),增区间为[1,3).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x-6x

(1)用单调性定义证明:f(x)在区间(0,+∞)上是增函数.
(2)函数y=f(x)在区间[1,3]上的值域为A,求函数y=4x-2x+1(x∈A)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)函数y=x+
a
x
(a是常数,且a>0)
有如下性质:①函数是奇函数;②函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判断函数y=x2+
c
x2
(常数c>0)在定义域内的奇偶性和单调性,并加以证明;
(3)对函数y=x+
a
x
和y=x2+
c
x2
(常数c>0)分别作出推广,使它们是你推广的函数的特例.判断推广后的函数的单调性(只需写出结论,不要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)=lg
5-x5+x

(1)求函数y=f(x)的定义域和值域;
(2)判断y=f(x)的奇偶性;
(3)判定y=f(x)的单调性.

查看答案和解析>>

同步练习册答案