精英家教网 > 高中数学 > 题目详情
10.若等比数列{an}满足a1+a3=5,且公比q=2,则a3+a5=20.

分析 利用等比数列的通项公式及其性质即可得出.

解答 解:a3+a5=q2(a1+a3)=22×5=20,
故答案为:20.

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2+lnx在x=1处的导数为(  )
A.2B.$\frac{5}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若a、b、c成等差数列,sinB=$\frac{4}{5}$,且△ABC的面积为$\frac{3}{2}$,则b=2.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)存在反函数f-1(x),若函数y=f(x+1)过点(3,3),则函数f-1(x)恒过点(  )
A.(4,3)B.(3,4)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆M的对称轴为坐标轴,且抛物线y2=4x的焦点F是椭圆M的一个焦点,以F为圆心,以椭圆M的短半轴长为半径的圆与直线$l:x-2\sqrt{2}y+2=0$相切.
(1)求椭圆M的方程;
(2)已知直线y=x+m与椭圆M交于A、B两点,且椭圆M上存在点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,O为坐标原点,C、D两点的坐标为C(-1,0),D(1,0),曲线E上的动点P满足$|{PC}|+|{PD}|=2\sqrt{3}$.又曲线E上的点A、B满足OA⊥OB.
(1)求曲线E的方程;
(2)若点A在第一象限,且$|{OA}|=\frac{{\sqrt{3}}}{2}|{OB}|$,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α是第四象限角tanα=-$\frac{5}{12}$,则cosα=(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二次函数y=x2-2x-1的对称轴是x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知ab=$\frac{1}{4}$,a,b∈(0,1),则$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值为4+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案