【题目】如图,某人工景观湖外围有两条相互垂直的直线型公路ll,l2,且ll和l2交于点O.为了方便游客游览,计划修建一条连接公路与景观湖的直线型公路AB.景观湖的轮廓可以近似看成一个圆心为O,半径为2百米的圆,且公路AB与圆O相切,圆心O到ll,l2的距离均为5百米,设OAB=
,AB长为L百米.
(1)求L关于
的函数解析式;
(2)当
为何值时,公路AB的长度最短?
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,点
是椭圆
上的一个动点,当直线
的斜率等于
时,
轴.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
的直线
与直线
相交于点
,试判断以
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将
的方程化为普通方程,将
的方程化为直角坐标方程;
(Ⅱ)已知直线
的参数方程为
,
为参数,且
,
与
交于点
,
与
交于点
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
对定义域内的每一个值
,在其定义域内都存在唯一的
,使
成立,则称该函数为“依赖函数”.
(1)判断函数
是否为“依赖函数”,并说明理由;
(2)若函数
在定义域
(
)上为“依赖函数”,求
的取值范围;
(3)已知函数
在定义域
上为“依赖函数”.若存在实数
,使得对任意的
,不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定实数 t,已知命题 p:函数
有零点;命题 q: x∈[1,+∞)
≤4
-1.
(Ⅰ)当 t=1 时,判断命题 q 的真假;
(Ⅱ)若 p∨q 为假命题,求 t 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(2)从图中考核成绩满足X
[70,79]的学生中任取3人,设Y表示这3人重成绩满足
≤10的人数,求Y的分布列和数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F是抛物线
的焦点,点M是抛物线上的定点,且
.
(1)求抛物线C的方程;
(2)直线AB与抛物线C交于不同两点
,直线
与AB平行,且与抛物线C相切,切点为N,试问△ABN的面积是否是定值.若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄 |
|
|
|
|
|
|
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的
列联表,并判断是否有
的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为
,试求随机变量
的分布列和数学期望.
参考数据:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com