精英家教网 > 高中数学 > 题目详情

【题目】如图,某人工景观湖外围有两条相互垂直的直线型公路lll2,且lll2交于点O.为了方便游客游览,计划修建一条连接公路与景观湖的直线型公路AB.景观湖的轮廓可以近似看成一个圆心为O,半径为2百米的圆,且公路AB与圆O相切,圆心Olll2的距离均为5百米,设OABAB长为L百米.

1)求L关于的函数解析式;

2)当为何值时,公路AB的长度最短?

【答案】1.2)当时,公路的长度最短

【解析】

1)建立平面直角坐标系,得到直线方程为,然后根据直线与圆相切,得,再根据题意得到,于是,即为所求.(2)利用换元法求解,令,则,且,于是,然后结合导数求解可得所求最值.

1)以点为坐标原点建立如图所示的平面直角坐标系,则

在直角中,

所以直线方程为

因为直线与圆相切,

所以

因为点在直线的上方,

所以

解得

因此L关于的函数解析式为

2)令,则,且

所以

因为

所以上单调递减,

所以当,即时,取得最小值,且

故当时,公路的长度最短.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点是椭圆上的一个动点,当直线的斜率等于时,轴.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点且斜率为的直线与直线相交于点,试判断以为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数,且交于点交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为依赖函数”.

1)判断函数是否为依赖函数,并说明理由;

2)若函数在定义域)上为依赖函数,求的取值范围;

3)已知函数在定义域上为依赖函数”.若存在实数,使得对任意的,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,EPC的中点,平面PAC⊥平面ABCD

1)证明:ED∥平面PAB

2)若,求二面角APCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.

(Ⅰ)当 t=1 时,判断命题 q 的真假;

(Ⅱ)若 pq 为假命题,求 t 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.

1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;

2)从图中考核成绩满足X[7079]的学生中任取3人,设Y表示这3人重成绩满足≤10的人数,求Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是抛物线的焦点,点M是抛物线上的定点,且.

(1)求抛物线C的方程;

(2)直线AB与抛物线C交于不同两点,直线与AB平行,且与抛物线C相切,切点为N,试问△ABN的面积是否是定值.若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查民众对国家实行新农村建设政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持新农村建设人数如下表:

年龄

频数

10

20

30

20

10

10

支持新农村建设

3

11

26

12

6

2

1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对新农村建设政策的支持度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持

不支持

合计

2)为了进一步推动新农村建设政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持新农村建设人数为,试求随机变量的分布列和数学期望.

参考数据:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

同步练习册答案