(本题满分12分) 已知函数![]()
.
(1)讨论函数
在定义域内的极值点的个数;
(2)若函数
在
处取得极值,对![]()
,
恒成立,求实数
的取值范围;
(3)当
且
时,试比较
的大小.
(1)当
时
在
上没有极值点,
当
时,
在
上有一个极值点(2)
(3)当0<x<e时
,当e<x<e2时![]()
【解析】
试题分析:(Ⅰ)
,当
时,
在
上恒成立,函数
在
单调递减,∴
在
上没有极值点;
当
时,
得
,
得
,
∴
在
上递减,在
上递增,即
在
处有极小值.
∴当
时
在
上没有极值点,
当
时,
在
上有一个极值点.-----3分
(Ⅱ)∵函数
在
处取得极值,∴
,
∴
,---------5分
令
,可得
在
上递减,在
上递增,
∴
,即
.------- 7分
(Ⅲ)由(Ⅱ)知
在(0,e2)上单调减
∴0<x<y<e2时,
即![]()
当0<x<e时,1-lnx>0,∴y(1-lnx)>x(1-lny), ∴![]()
当e<x<e2时,1-lnx<0,∴y(1-lnx)>x(1-lny), ∴
-----12分
考点:利用函数的导数求极值最值单调区间
点评:不等式恒成立问题常转化为求函数最值问题。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com