精英家教网 > 高中数学 > 题目详情

(12分)如图,已知椭圆=1(a>b>0)过点(1,),离心率为,左、右焦点分别为F1、F2. 点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.

(1)求椭圆的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2, 证明:=2;

 

【答案】

【解析】(1)因为椭圆过点(1,),e=. 所以.

又a2=b2+c2,

所以a=,b=1, c=1.

(2)(i)证明:方法一:由于F1(-1,0)、F2(1,0),PF1、PF2的斜率分别为k1、k2,且点P不在x轴上.

所以k1≠k2,k1≠0,k2≠0.

又直线PF1,PF2的方程分别为y=k1(x+1),y=k2(x-1),

联立方程解得

所以P.

因此2k1k2+3k1-k2=0,即,结论成立.

方法二:设P(x0,y0),

则k1=, k2=,

因为点P不在x轴上,所以y0≠0.

又x0+y0=2,

所以

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

素材1:如图,已知椭圆 =1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A、B、C、D;

素材2:设f(m)=||AB|-|CD||.

试根据上述素材构建一个问题,然后再解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为ABCD,设f(m)=||AB|-|CD||

(1)求f(m)的解析式;

(2)求f(m)的最值.

查看答案和解析>>

科目:高中数学 来源:2014届广东省、阳东一中高二上联考文数试卷(解析版) 题型:解答题

(本题满分14分)

如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期11月月考理科数学卷 题型:解答题

(本小题满分15分)

如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及直线的交点从左到右的顺序为ABCD,设

(Ⅰ)求的解析式;

(Ⅱ)求的最值.

 

查看答案和解析>>

同步练习册答案