精英家教网 > 高中数学 > 题目详情
已知函数的导函数满足),则(   )
A.B.
C.D.
A

试题分析:构造函数,则
 , ∴>0,  ∴在R上递增,  ∴
 ,∴,故选A.
点评:中档题,在某区间,导数值非负,函数为增函数,导数值非正,函数为减函数。解答本题关键是构造函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足的导函数,且导函数的图象如右图所示.则不等式的解集是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数y=f(x),x∈R的导函数为,且,则下列成立的是(  )
A.f(0)<e?1f(1)<e2f(2)B.e2f(2)< f(0)<e?1f(1)
C.e2f(2)<e?1f(1)<f(0)D.e?1f(1)<f(0)<e2f(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,对任意,不等式恒成立,则正数的取值范围是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,,其中R .
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数, 当时,若存在,对于任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知函数满足对于,均有成立.
(1)求函数的解析式;
(2)求函数的最小值;
(3)证明:.

查看答案和解析>>

同步练习册答案