精英家教网 > 高中数学 > 题目详情

数列{an}满足a1=1,an+3=an+3,an+2≥an+2(n∈N*).
(1)求a7,a5,a3,a6;    
(2)求数列{an}的通项公式an
(3)求证:数学公式

解:(1)∵a1=1,an+3=an+3,
∴a4=4,a7=7
∵an+2≥an+2
∴a3≥3,a5≥a3+2,a7≥a5+2,
∴a5=5,a3=3,a6=a3+3=6
(2)∵an+3=an+3,an+2≥an+2(n∈N*
∴an+3≤an+2+1(n∈N*
∴an+1≤an+1,an+2≤an+1+1
∴an+1+an+2+an+3≤an+an+1+an+2+3,即an+3≤an+3
∴an+1=an+1,an+2=an+1+1,an+3=an+2+1
∴{an}为等差数列,公差d=1.
∴an=n
(3)证明:n=1时,=1<2成立n>1时,
=(n>1)

=<2

分析:(1)利用已知条件an+3=an+3,求出a4=4,a7=7,再利用条件an+2≥an+2得到a7,a5,a3,a6值.
(2)利用已知条件an+2≥an+2得到数列的递推关系,利用等差数列的定义判断出数列为等差数列,利用通项公式求出
数列{an}的通项公式an.
(3)先求出通项=,再将其放缩,然后利用裂项相消的方法证出不等式.
点评:证明与数列的和有关的不等式时,一般能求和的先求出和,若不能求和,常通过放缩法转化为能求和的数列和的不等式再证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案