精英家教网 > 高中数学 > 题目详情
17.连续抛掷两枚骰子,第一枚骰子和第二枚骰子点数之差是一个随机变量X,则“X>4”表示的实验结果是(  )
A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点
C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点

分析 利用随机事件的定义直接求解.

解答 解:连续抛掷两枚骰子,第一枚骰子和第二枚骰子点数之差是一个随机变量X,
则“X>4”表示的实验结果是第一枚6点,第二枚1点.
故选:D.

点评 本题考查试验结果的判断,是基础题,解题时要认真审题,注意随机事件的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值
(Ⅱ)求f(x)在区间[0,2]上的最小值以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{x^3}{3}+{x^2}-3x-\frac{2}{3}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)用反证法证明:在[-1,1]上,不存在不同的两点(x1,f(x1)),(x2,f(x2)),使得f(x)的图象在这两点处的切线相互平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow a,\overrightarrow b$是两个非零向量,且$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$,则下列说法正确的是(  )
A.$\overrightarrow a+\overrightarrow b=\overrightarrow 0$B.$\overrightarrow a=\overrightarrow b$
C.$\overrightarrow a$与$\overrightarrow b$共线反向D.存在正实数λ,使$\overrightarrow a=λ\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$f(x)={(\frac{1}{2})^x}$,则“x1+x2>0”是“f(x1)•f(x2)<1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a∈R,解关于x的不等式ax2-(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在(1-x3)(1+x)10的展开式中,x4的系数是(  )
A.-10B.200C.210D.220

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正三棱锥的底面边长为2,三条侧棱两两互相垂直,则此棱锥的体积为(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{2}{3}\sqrt{2}$C.$\sqrt{2}$D.$\frac{4}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂的甲、乙两个车间的110名工人进行了劳动技能大比拼,规定:技能成绩大于或等于90分为优秀,90分以下为非优秀.统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个车间工人中随机抽取1人为优秀的概率为$\frac{3}{11}$
优秀非优秀合计
甲车间105060
乙车间203050
合计3080110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与车间有关系?”

查看答案和解析>>

同步练习册答案