精英家教网 > 高中数学 > 题目详情
设双曲线C:
x2
a2
-y2=1
(a>0)与直线l:y+x=1相交于两不同点A,B,设直线l与y轴交点为P,且
PA
=
5
12
PB
,则a=
 
分析:由曲线C与直线l有两个不同交点,得其两方程联立后二次方程的△>0,借助向量相等条件,韦达定理,列出只含a的方程,再求解
解答:解:把直线与双曲线方程联立消去y得(1-a2)x2+2a2x-2a2=0,设A(x1,y1),B(x2,y2),P(0,1),
PA
=
5
12
PB

∴(x1,y1-1)=
5
12
(x2,y2-1),
求得x1=
5
12
x2
∵x1+x2=
17
12
x2=-
2a2
1-a2
,x1x2=
5
12
x22=-
2a2
1-a2

消去x2得-
2a2
1-a2
=
289
60
,a=
17
13

故答案为:
17
13
点评:本题考查直线、双曲线的概念性质,韦达定理、不等式、平面向量的运算,解方程等知识,考查数形结合,方程、不等式的思想方法,以及推理运算能力和综合运用数学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1
的右焦点为F2,过点F2的直线l与双曲线C相交于A,B两点,直线l的斜率为
35
,且
AF2
=2
F2B

(1)求双曲线C的离心率;
(2)如果F1为双曲线C的左焦点,且F1到l的距离为 
2
35
3
,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.
(1)求双曲线C的离心率e的值;
(2)若双曲线C被直线y=ax+b截得的弦长为
b2e2
a
求双曲线c的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-y2=1 (a>0) 与直线 l:x+y=1
相交于两个不同的点A、B.
(1)求a的取值范围:(2)设直线l与y轴的交点为P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它实轴的两个端点,l是其虚轴的一个端点.已知其一条渐近线的一个方向向量是(1,
3
),△lR1R2的面积是
3
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程,并指明是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

同步练习册答案