| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由θ是第三象限角,可得$\frac{θ}{2}$为第二或第四象限角,结合|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$求得答案.
解答 解:∵θ是第三象限角,∴π+2kπ<θ<$\frac{3π}{2}$+2kπ,k∈Z,
则$\frac{π}{2}$+kπ<$\frac{θ}{2}$<$\frac{3π}{4}$+kπ,k∈Z,即$\frac{θ}{2}$为第二或第四象限角,
又|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,
∴$\frac{θ}{2}$为第四象限角.
故选:D.
点评 本题考查三角函数值的符号,考查了象限角的概念,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{16}{3}$ | C. | 8 | D. | $\frac{128}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com