精英家教网 > 高中数学 > 题目详情
6.下列命题:
①平面的每条斜线都垂直于这个平面内的无数条直线;
②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;
③若平面的两条斜线段相等,则它们在同一平面内射影也相等;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.
其中正确的有(  )
A.1个B.2个C.3个D.4个

分析 对四个命题分别进行判断,即可得出结论.

解答 解:①平面的每条斜线都垂直于这个平面内的无数条直线,这无数条直线与斜线在平面内的射影垂直,正确;
②若一条直线垂直于平面的斜线,利用线面垂直的判断与性质,可得此直线必垂直于斜线在此平面内的射影,正确;
③若平面的两条斜线段相等,且线面角相等时,则它们在同一平面内射影也相等,故不正确;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长,正确.
故选:C.

点评 本题考查线面垂直的判断与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.己知P是面积为S三角形ABC内部点,则三角形PBC的面积大于$\frac{S}{3}$的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:$\sqrt{a}+\sqrt{b}+\sqrt{c}$$≤\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$其中(a,b,c∈R+,且abc=1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-4ax-2ay+20a-25=0
(1)求证:对任意a∈R.圆C恒过定点
(2)当a变化时,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x+$\sqrt{1+2x}$.
(1)求f(x)的定义域;
(2)判断f(x)在其定义域上的单调性,并用单调性定义证明;
(3)求出f(x)的最小值;
(4)解方程:x+$\sqrt{1+2x}$=x2-1+$\sqrt{2{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a3=33,an=2an-1+2n-1(n≥2).
(1)求a1,a2
(2)证明:数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}满足a1=3,且an+1=an2,通项an=${3}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=${log}_{\frac{1}{2}}$(2x2-5x+2)的值域为[0,+∞),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)由下表给出,则f(2)+f(3)=(  )
x1234
f(x)0.5251
A.2.5B.7C.5.5D.13

查看答案和解析>>

同步练习册答案