精英家教网 > 高中数学 > 题目详情
8.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.$,若目标函数z=ax+2by(a>0,b>0)在该约束条件下的最小值为2,则$\frac{1}{a}+\frac{4}{b}$的最小值为9.

分析 首先根据约束条件求出使得目标函数z=ax+2by(a>0,b>0)在该约束条件下的最小值为2的x,y值,得到a,b的等式,利用基本不等式求最小值.

解答 解:由题意变量x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.$,
对应的区域如图,可得在A(2,1)处z取得最小值,所以2a+2b=2,即a+b=1,
所以$\frac{1}{a}+\frac{4}{b}$=($\frac{1}{a}+\frac{4}{b}$)(a+b)
=5+$\frac{b}{a}+\frac{4a}{b}$≥5+2$\sqrt{4}$=9,
当且仅当$\frac{b}{a}=\frac{4a}{b}$时等号成立.
故答案为:9

点评 本题考查了简单线性规划问题与基本不等式结合,正确求出关于a,b的等式是解答的前提,对所求正确变形,利用基本不等式求最小值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.圆的一条直径的两个端点是(2,0),(0,2)时,则此圆的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=9D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AB∥CD,AB=AD=2,CD=1,侧面PAD⊥底面ABCD,且△PAD是以AD为底的等腰三角形
(1)证明:AD⊥PB;
(2)若三棱锥C-PBD的体积等于$\frac{1}{2}$,问:是否存在过点C的平面CMN,分别交PB、AB于点M,N,使得平面CMN∥平面PAD?若存在,求出△CMN的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若命题“?x∈R,ax2+2x+1>0”为真命题,则a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B等于(  )
A.{-1,0}B.{-1,0,1,2}C.{0,1,2,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{-x+1,0≤x≤1}\\{lnx,1<x≤e}\end{array}\right.$,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(  )
A.$\frac{2e-3}{2e}$B.$\frac{3}{2e}$C.$\frac{{e}^{e}{-e}^{2}+e-1}{e}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列满足条件的圆的方程
(1)圆心为C(2,-2)且过点P(6,3)的圆的方程
(2)己知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,且${S_n}=\frac{1}{3}n{a_n}+{a_n}-c$(c是常数,n∈N*),a2=6.
(1)求数列{an}的通项公式
(2)证明:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)计算:$\frac{1}{2}lg2+\sqrt{{{(lg\sqrt{2})}^2}-lg2+1}-\root{3}{{\sqrt{a^9}•\sqrt{{a^{-3}}}}}÷\root{3}{{\frac{{\sqrt{{a^{13}}}}}{{\sqrt{a^7}}}}}$,a>0;
(Ⅱ)已知$a={3^{{{log}_2}6-{{log}_3}\frac{1}{5}}},b={6^{{{log}_2}3}}•[3+\sqrt{{{(-4)}^2}}]$,试比较a与b的大小.

查看答案和解析>>

同步练习册答案