【题目】在一次调查中,甲、乙、丙、丁四位同学阅读量有如下关系:同学甲、丙阅读量之和与乙、丁阅读量之和相同,同学甲、乙阅读量之和大于丙、丁阅读量之和,丁的阅读量大于乙、丙阅读量之和.那么这四名同学按阅读量从大到小的排序依次为________.
科目:高中数学 来源: 题型:
【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:
年龄(单位:岁) |
| |||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄55岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99.9%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于55岁的人数于 | 年龄低于55岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0),椭圆C上的点到焦点距离的最大值为9,最小值为1.
(1)求椭圆C的标准方程;
(2)求椭圆C上的点到直线l:4x﹣5y+40=0的最小距离?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=4y的焦点为F,过点P(-2,2)的直线l与抛物线C交于A,B两点.
(1)当点P为A、B的中点时,求直线AB的方程;
(2)求|AF||BF|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推那么该数列的前50项和为
A. 1044 B. 1024 C. 1045 D. 1025
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合,交圆于,两点,过点作的平行线交于点.
(1)求的值;
(2)设点的轨迹为曲线,直线与曲线相交于,两点,与直线相交于点,试问在椭圆上是否存在一定点,使得,,成等差数列(其中,,分别指直线,,的斜率).若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)
(1) 求摄影者到立柱的水平距离和立柱的高度;
(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com