精英家教网 > 高中数学 > 题目详情
20.设点M的直角坐标为(1,1,$\sqrt{2}$),求它的球坐标.

分析 根据球坐标与直角坐标的对应关系计算即可.

解答 解:设M的球坐标为(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π,
则r=OM=$\sqrt{{1}^{2}+{1}^{2}+(\sqrt{2})^{2}}$=2,
cosφ=$\frac{\sqrt{2}}{2}$,∴φ=$\frac{π}{4}$.
又$\left\{\begin{array}{l}{cosθ=\frac{1}{\sqrt{2}}}\\{sinθ=\frac{1}{\sqrt{2}}}\end{array}\right.$,∴θ=$\frac{π}{4}$.
∴M的球坐标为(2,$\frac{π}{4}$,$\frac{π}{4}$).

点评 本题考查了球坐标与直角坐标的对应关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的命题是(  )
A.m⊥α,n?β,m⊥n⇒α⊥βB.α⊥β,α∩β=m,n⊥m⇒n⊥β
C.α⊥β,m⊥α,n∥β⇒m⊥nD.α∥β,m⊥α,n∥β⇒m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=xcos(3x+$\frac{3}{2}$π)是(  )
A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(2x$-\frac{π}{3}$)-2sin(x$+\frac{π}{4}$)cos(x$+\frac{π}{4}$)
(1)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知锐角α,β满足sin(α+β)cosβ=2cos(α+β)sinβ,当α取得最大值时,tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax-lnx;g(x)=$\frac{lnx}{x}$.
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e-g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于?x1∈[1,e],?x0∈[1,e],使f(x1)=h(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”逆否命题为“若x≠1,则x2-3x+2≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0
D.若p∧q为假命题,则p、q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.运行程序,输入n=4,则输出y的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}-\sqrt{6}}{4}$C.$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

同步练习册答案