精英家教网 > 高中数学 > 题目详情
1.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的命题是(  )
A.m⊥α,n?β,m⊥n⇒α⊥βB.α⊥β,α∩β=m,n⊥m⇒n⊥β
C.α⊥β,m⊥α,n∥β⇒m⊥nD.α∥β,m⊥α,n∥β⇒m⊥n

分析 在A中,α与β相交或平行;在B中,n与β相交、平行或n?β;在C中,m与n相交、平行或异面;在D中,由线面垂直和线面平行的性质定理得m⊥n.

解答 解:由m,n是两条不同的直线,α,β是两个不同的平面,知:
在A中,m⊥α,n?β,m⊥n⇒α与β相交或平行,故A错误;
在B中,α⊥β,α∩β=m,n⊥m⇒n与β相交、平行或n?β,故B错误;
在C中,α⊥β,m⊥α,n∥β⇒m与n相交、平行或异面,故C错误;
在D中,α∥β,m⊥α,n∥β⇒m⊥n,由线面垂直和线面平行的性质定理得D正确.
故选:D.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)右顶点A且与其中一条渐近线平行,又与另一条渐近线交于点B,满足三角形AOB的面积为$\frac{{a}^{2}}{4}$,则该双曲线的离心率e为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(cos(x-$\frac{π}{6}$),-1),$\overrightarrow{b}$=(cos(x-$\frac{π}{6}$),cos2x),x∈R,函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)图象的对称中心
(2)若x∈[-$\frac{π}{4}$,$\frac{π}{2}$],求函数f(x)的最大值和最小值,并求出f(x)取得最值时x的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C的对边分别为a,b,c,且满足a2+c2-b2=ac,${\overrightarrow{CA}^{\;}}{•^{\;}}\overrightarrow{AB}>0$,$b=\sqrt{3}$,则a+c的取值范围是(  )
A.(2,3)B.$(\sqrt{3},3)$C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若数列{an}满足|ak+1-ak|=1(k=1,2,…n-1;n∈N*,n≥2),称数列{an}为E数列,记Sn为其前n项和
(Ⅰ)写出一个满足a1=a5=0,且S5>0的E数列{an}
(Ⅱ)若a1=2,n=2017,证明:若E数列{an}是递增数列,则an=2018;反之,若an=2018,则E数列{an}是递增数列
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列{an},使得Sn=0?如果存在,写出一个满足条件的E数列{an},如果不在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.做一个无盖的圆柱形水桶,若要使其体积是64π,且用料最省,则圆柱的底面半径为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=1+2i,则$\overline{z}$等于(  )
A.5+4iB.1-2iC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2cos2θ-4ρsinθ=4
(1)若α=$\frac{π}{4}$,求直线l的极坐标方程以及曲线C的直角坐标方程:
(2)若直线l与曲线C交于M、N两点,且|MN|=12,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设点M的直角坐标为(1,1,$\sqrt{2}$),求它的球坐标.

查看答案和解析>>

同步练习册答案