精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知数列{an},{bn}满足a1=1,且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b10等于(  )
分析:由韦达定理,得出anan+1=2n,所以an+1an+2=2n+1,两式相除得
an+2
an
=2,数列{an}中奇数项成等比数列,偶数项也成等比数列.求出a10,a11后,先将即为b10
解答:解:由已知,anan+1=2n,所以an+1an+2=2n+1
两式相除得
an+2
an
=2
所以a1,a3,a5,…成等比数列,a2,a4,a6,…成等比数列.而a1=1,a2=2,
所以a10=2×24=32.a11=1×25=32,
又an+an+1=bn
所以b10=a10+a11=64
故选D
点评:本题考查了韦达定理的应用,等比数列的判定及通项公式求解,考查转化、构造、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案