已知函数
,![]()
⑴求证函数
在
上的单调递增;
⑵函数
有三个零点,求
的值;
⑶对
恒成立,求a的取值范围。
(1)详见解析;(2)
;(3)
.
【解析】
试题分析:(1)证明函数在某区间单调递增,判断其导函数在此区间上的符号即可;(2)判断函数零点的个数一般可从方程或图象两个角度考察,但当函数较为复杂,难以画出它的图象时,可以将其适当等价转化,变为判断两个函数图象交点个数;(3)恒成立问题则常用分离参数的方法,转化为求函数的最值问题,也可直接考察函数的性质进行解决,本题则可转化为
,而求
则可利用导数去判断函数的单调性,还要注意分类讨论.
试题解析:⑴证明:
,
![]()
函数
在
上单调递增.
3分
⑵解:令
,解得![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
极小值1 |
|
,
函数
有三个零点,
有三个实根,
.
7分
⑶由⑵可知
在区间
单调递减,在区间
单调递增,
,
又
,
设
,则![]()
在
上单调递增,
,即
,
,
所以,对于
,
.
12分
考点:函数的单调性、函数的零点、不等式恒成立问题.
科目:高中数学 来源: 题型:
| f(x) |
| x |
| f(x) |
| x2 |
| x | a | b | c | a+b+c |
| f(x) | d | d | t | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 9 | m2-3 |
查看答案和解析>>
科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
,所有“二阶比增函数”组成的集合记为
.
(Ⅰ)已知函数
,若
且
,求实数
的取值范围;
(Ⅱ)已知
,
且
的部分函数值由下表给出,
|
|
|
|
|
|
|
|
|
|
|
|
求证:
;
(Ⅲ)定义集合![]()
请问:是否存在常数
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”.
我们把所有“一阶比增函数”组成的集合记为
,所有“二阶比增函数”组成的集合记为
.
(Ⅰ)已知函数
,若
且
,求实数
的取值范围;
(Ⅱ)已知
,
且
的部分函数值由下表给出,
|
|
|
|
|
|
|
|
|
|
|
求证:
;
(Ⅲ)定义集合![]()
请问:是否存在常数
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com