精英家教网 > 高中数学 > 题目详情

已知a>0,且a≠1,则下述结论正确的是


  1. A.
    log3π<log20.8
  2. B.
    loga7>loga6
  3. C.
    1.70.3>0.93.1
  4. D.
    a0.7<a2
C
分析:结合指数函数与对数函数的单调性逐项进行判断,从而找出正确的选项即可
解答:A:由对数函数的单调性可知log20.8<0<log3π,故错误
B:由于a的范围不确定,故loga7与loga6的大小不确定,故错误
C:1.70.3>1>0.93.1,故正确
D:同选项B,故错误
故选C.
点评:本题主要考查了指数函数与对数函数的单调性的应用,当所要比较的指数(对数)式的底数不同时,其关键是要引入特殊的店对应的函数值以区分两式的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,且a≠1,数学公式
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市学军中学高一(上)期中数学试卷(解析版) 题型:解答题

已知a>0,且a≠1,
(1)求f(x)的表达式,并判断其单调性;
(2 )当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒为负值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年山东省聊城一中高三模块测试数学试卷(理科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省中山一中、深圳市宝安中学高三第二次联考数学试卷(文科)(解析版) 题型:解答题

已知a>0,且a≠1,设p:函数y=loga(x+1)在x∈(0,+∞)内单调递减;q:函数y=x2+(2a-3)x+1有两个不同零点,如果p和q有且只有一个正确,求a的取值范围.

查看答案和解析>>

同步练习册答案