精英家教网 > 高中数学 > 题目详情
7.已知$f(x)=sin(2x-\frac{π}{3})$.
(1)求$f({\frac{π}{8}})$的值;         
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且$f({\frac{A}{2}})=0$,a=3,$b+c=2\sqrt{3}$,求△ABC的面积.

分析 (1)把x=$\frac{π}{8}$代入$f(x)=sin(2x-\frac{π}{3})$,利用两角差的正弦公式化简即可;
(2)由$f(\frac{A}{2})=0$和角A的范围求出角A的值,由条件和余弦定理列出方程利用整体代换求出bc的值,代入三角形的面积公式求出△ABC的面积.

解答 解:(1)由题意得,$f(x)=sin(2x-\frac{π}{3})$,
则$f(\frac{π}{8})=sin(\frac{π}{4}-\frac{π}{3})$=$sin\frac{π}{4}cos\frac{π}{3}-cos\frac{π}{4}sin\frac{π}{3}$
=$\frac{{\sqrt{2}}}{2}•\frac{1}{2}-\frac{{\sqrt{2}}}{2}•\frac{{\sqrt{3}}}{2}$=$\frac{{\sqrt{2}-\sqrt{6}}}{4}$…(5分)
(2)有$f({\frac{A}{2}})=0$可得:$sin(A-\frac{π}{3})=0$,…(6分)
因为角A为△ABC的内角,所以$A=\frac{π}{3}$,…(7分)
由余弦定理可得:a2=b2+c2-2bccosA=b2+c2-bc,…(8分)
∵a=3,(b+c)2=12,∴b2+c2=12-2bc,
代入上式解得:bc=1…(10分)
所以△ABC的面积${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}$…(12分)

点评 本题考查余弦定理,两角和与差的正弦公式,注意内角的范围,以及整体代换求值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.从1到2015这2015个正整数中,有多少个3的倍数?671;有多少个被3除余1且被4除余2的整数?167.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列命题:
①向量$\overrightarrow{AB}$与向量$\overrightarrow{BA}$的长度相等,方向相反;
②$\overrightarrow{AB}$+$\overrightarrow{BA}$=0;
③两个相等的向量的起点相同,则其终点必相同;
④$\overrightarrow{BA}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点共线.
其中不正确的命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求值:cos$\frac{π}{3}$-tan$\frac{π}{4}$-sin$\frac{π}{6}$+sin$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4)时,f(x)=x2-2x,则函数f(x)在[0,2015]上的零点个数是605.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,则cos($\frac{π}{3}$-2α)=$\frac{7\sqrt{3}±4\sqrt{2}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.有下列四个命题:
①命题“若xy=1,则x,y互为倒数”的逆命题;
②命题“若x≠2或x≠3,则(x-2)(x-3)≠0”的逆否命题;
③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;
④命题“若A⊆B,则A∩B=B”的逆命题;
其中是真命题的是①③ (填上你认为正确的命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从一批产品中取出三件产品,设A=“三件产品不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论不正确的是(  )
A.A与B互斥且为对立事件B.B与C互斥且为对立事件
C.A与C存在有包含关系D.A与C不是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班第一小组8位同学数学测试成绩用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是(  )
A.90.5B.91.5C.92D.92.5

查看答案和解析>>

同步练习册答案