分析 f(x)=0实根个数即函数y=2014x的图象和函数y=-log2014x的交点个数,数形结合可得在(0,+∞)上,两个图象只有一个交点.再根据奇函数的性质可得当x<0时,两个图象只有一个交点,且f(0)=0,综合可得结论.
解答
解:由题意可得,f(x)=0实根个数
即函数y=2014x的图象和函数y=-log2014x的交点个数,
在同一坐标系下分别画出函数y=2014x,y=-log2014x的图象,
如图所示,在(0,+∞)上,两个图象只有一个交点,
即方程f(x)=0只有一个实根.
再根据奇函数的性质可得f(0)=0,
再根据奇函数的图象的对称性可得,
当x<0时,两个图象只有一个交点,
即方程f(x)=0只有一个实根.
综上,在R上,函数f(x)=0实根的个数为3,
故答案为:3.
点评 本题考查奇(偶)函数图象的性质应用,即根据题意画出一部分函数的图象,由交点的个数求出对应方程根的个数,利用图象的对称性和“f(0)=0”求出方程根的个数,易漏f(0)=0,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{12}$,0) | B. | ($\frac{π}{6}$,0) | C. | ($\frac{π}{4}$,0) | D. | ($\frac{π}{3}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,0) | C. | (0,4) | D. | (0,1)∪(1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com