设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),下面关于f(x)的判定:其中正确命题的序号为 .
①f(4)=0;
②f(x)是以4为周期的函数;
③f(x)的图象关于x=1对称;
④f(x)的图象关于x=2对称.
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试选修4-5不等式选讲练习卷(解析版) 题型:解答题
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.
(1)求a的值;
(2)求函数f(x)=|x+a|+|x-2|的最小值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试解答题抢分训练练习卷(解析版) 题型:解答题
设L为曲线C:y=在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(四)第二章第一节练习卷(解析版) 题型:填空题
已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其函数对应关系如下表:
则方程g(f(x))=x的解集为____________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(四)第二章第一节练习卷(解析版) 题型:选择题
设f(x)=则f(5)的值为( )
(A)10 (B)11 (C)12 (D)13
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:选择题
设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f()的所有x之和为( )
(A)-3 (B)3 (C)-8 (D)8
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:选择题
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )
(A)f(x)+|g(x)|是偶函数
(B)f(x)-|g(x)|是奇函数
(C)|f(x)|+g(x)是偶函数
(D)|f(x)|-g(x)是奇函数
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(八)第二章第五节练习卷(解析版) 题型:选择题
函数f(x)=1+log2x,f(x)与g(x)=21-x在同一直角坐标系下的图象大致是( )
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(九)第二章第六节练习卷(解析版) 题型:选择题
已知函数f(x)=x2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( )
(A)8 (B)6 (C)4 (D)2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com