精英家教网 > 高中数学 > 题目详情
20.直线3x-4y-5=0的倾斜角的大小为arctan$\frac{3}{4}$(结果用反三角函数值表示)

分析 根据所给的直线3x-4y-5=0,得到直线的斜率时$\frac{3}{4}$,直线的斜率是倾斜角的正切,得到tanα=$\frac{3}{4}$,α∈[0,π],根据倾斜角的范围和正切的反三角函数的值域确定结果.

解答 解:∵直线3x-4y-5=0,
∴直线的斜率时$\frac{3}{4}$,
直线的斜率是倾斜角的正切,
∴tanα=$\frac{3}{4}$,α∈[0,π],
∴α=arctan$\frac{3}{4}$,
故答案为:arctan$\frac{3}{4}$.

点评 本题考查反三角函数的应用及直线的倾斜角与斜率的关系,本题解题的关键是理解反三角函数的值域和倾斜角的范围,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的两个焦点分别为F1,F2,若椭圆上存在点P使得∠F1PF2是钝角,则椭圆离心率的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AD}$等于(  )
A.$\overrightarrow{CD}$B.$\overrightarrow{DC}$C.$\overrightarrow{AD}$D.$\overrightarrow{CB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,棱AC的中点为D
(1)求证:B1C∥平面A1BD;
(2)若平面ABC⊥平面ABB1A1,AA1=AB=$\sqrt{2}$BC=$\sqrt{2}$AC=2,∠A1AB=60°,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2为左、右焦点,M为椭圆上一点且MF2⊥x轴,设P是椭圆上任意一点,若△PF1F2面积的最大值是△OMF2面积的3倍(O为坐标原点),则该椭圆的离心率e=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=-1相切,圆心分别为C1、C2,若动点M满足2$\overrightarrow{C_2M}$=$\overrightarrow{C_2C_1}$+$\overrightarrow{C_2A}$,则M的轨迹方程为y2=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=4x的准线l与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相切,且l与该双曲线的渐近线相交于A、B两点,若△ABO(O为原点)为钝角三角形,则双曲线的离心率的取值范围为(  )
A.($\sqrt{3}$,+∞)B.(1,$\sqrt{3}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线为l1、l2.过椭圆C的右焦点F作直线l,使l丄l1.设直线l与椭圆C的两个交点由上至下依次为A,B,直线l与直线l2交于P点.
(Ⅰ)若l1与l2的夹角为60°,且双曲线的焦距为4,求椭圆C的方程:
(n)设$\overrightarrow{FA}$=λ$\overrightarrow{AP}$,当λ取得最大时,椭圆C的离心率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x2-2mx-3m2|(m∈R).
(1)讨论函数f(x)的单调性;
(2)当m≥0时,记函数f(x)在区间[-1,1]上的最大值为φ(m),试求φ(m)的解析式.

查看答案和解析>>

同步练习册答案