精英家教网 > 高中数学 > 题目详情
11.已知数列{bn}共有8项且满足b1=2014,b8=2015,且bn+1-bn∈{-1,$\frac{1}{3}$,1},(其中n=1,2,…,7),则这样的数列{bn}共有(  )
A.7个B.252个C.210个D.35个

分析 运用数列相邻两项差的值,可能够取值的情况分类讨论,转化为排列组合问题求解.

解答 解:∵数列{bn}共有8项且满足b1=2014,b8=2015,
∴b8-b1=b8-b7+b7-b6+b6-b5+b5-b4+b4-b3+b3-b2+b2-b1=1,
bn+1-bn∈{-1,$\frac{1}{3}$,1}(其中n=1,2,…,7),共有7对差,
可能bn+1-bn=-1,或bn+1-bn=$\frac{1}{3}$,或bn+1-bn=1.
设-1有x个,$\frac{1}{3}$有y个,1有7-x-y个,
则x(-1)+$\frac{y}{3}$+1×(7-x-y)=1,
即6x+2y=18,x,y∈[0,7]的整数,
可判断;x=1,y=6;x=2,y=3;x=3,y=0,三组符合
所以共有数列${C}_{7}^{1}+{C}_{7}^{3}{C}_{4}^{2}{C}_{2}^{2}+{C}_{7}^{3}{C}_{4}^{4}$=7+210+35=252.
故选:B.

点评 本题考查了方程的解转化为组合问题等基础知识与基本技能方法,考查了推理能力,转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(-1)k2alnx(k∈N,a∈R且a>0).
(1)求f(x)的极值;
(2)若k=2016,关x的方程f(x)=2ax有唯一解,求a的值.
(3)k=2015时,证明:对一切x>0都有f(x)-x2>2a($\frac{1}{{e}^{x}}$-$\frac{2}{ex}$)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知偶函数f(x),当 x∈[0,2)时,f(x)=sinx,当 x∈[2,+∞)时,f(x)=log2x,则f(-$\frac{π}{3}$)+f(4)=(  )
A.$-\sqrt{3}+2$B.1C.3D.$\frac{\sqrt{3}}{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简$\frac{{cos({2π-α})tan({π-α})}}{{sin({π+α})}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A=[-1,1],B=[-2,2],函数f(x)=2x2+mx-1,
(1)设不等式f(x)≤0的解集为C,当C⊆(A∩B)时,求实数m的取值范围;
(2)若对任意x∈R,都有f(1-x)=f(1+x)成立,试求x∈B时,函数f(x)的值域;
(3)设g(x)=2|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.海滨某城市A附近海面上有一台风,在城市A测得该台风中心位于方位角150°、距离400km的海面P处,并正以70km/h的速度沿北偏西60°的方向移动,如果台风侵袭的范围是半径为250km的圆形区域.
(1)几小时后该城市开始受到台风侵袭?
(2)该台风将持续影响该城市多长时间?
(参考数据:$\sqrt{3}≈1.73$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在数列{an}中,a1=2,an+1=3an+2,求数列{an}的通项公式an
(2)已知数列{an}的前n项和Sn=$\frac{2}{3}{a_n}$+$\frac{1}{3}$,求数列{an}的通项公式an
(3)已知数列{an}满足a1+3a2+32a3+…+3n-1an=n2+1,n∈N*,求数列{an}的通项公式an
(4)已知数列{an}满足an=$\left\{\begin{array}{l}{a_{n+1}}-2,n为奇数\\ \frac{1}{2}{a_{n+1}},n为偶数\end{array}$,且a1=1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={x|x-5<2x-4<5-x},B={x|x2-3x≤0,x∈R},C={x|2x2+mx-1<0,x∈R},若对任意x∈A∩B都有x∈C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数f(x)=ax3+bx2+cx+d同时满足以下条件:
①f(x) 在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)的图象在x=0处的切线与直线y=x+2垂直.
(1)求函数f(x) 的解析式;
(2)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

同步练习册答案