精英家教网 > 高中数学 > 题目详情
四个不同的小球放入编号为1,2,3,4的盒子中.
(1)共有多少种不同的放法?(结果用数字作答)
(2)若每个盒子均有一球,共有多少种不同的放法?(结果用数字作答)
(3)恰好有一个盒子为空,共有多少种不同的放法?(结果用数字作答)
考点:计数原理的应用
专题:应用题,排列组合
分析:(1)每个小球都有4种放法;
(2)每个盒子均有一球,也就是4个元素的排列;
(3)由题意知需要先选两个元素作为一组再排列,恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,根据分步计数原理得到结果.
解答: 解:(1)每个小球都有4种放法,故共有44=256种不同的放法;
(2)每个盒子均有一球,也就是4个元素的排列,故有A44=24种不同的放法;
(3)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,
从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法.
点评:本题考查分步计数原理,是一个基础题,解题的过程中注意这种有条件的排列要分步走,先选元素再排列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(0,
3
),曲线C的参数方程为
x=
5
cosφ
y=
15
sinφ
(φ为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
3
2cos(θ-
π
6
)

(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与曲线C的两个交点为A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3cos2x的单调递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x2
n(n∈N+)的展开式中第五项的二项式系数与第三项的二项式系数的比为14:3
(1)求展开式中各项系数的和
(2)求展开式中含x 
5
2
的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=1,an=n(an-1-an),递减等比数列{bn}满足:b2=
1
4
,其前三项和S2=
7
8

(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{an•bn}的前n项和为Tn,求Tn+an•bn+4bn2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,并且经过定点P(
3
1
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B为椭圆E的左右顶点,P为直线l:x=4上的一动点(点P不在x轴上),连AP交椭圆于C点,连PB并延长交椭圆于D点,试问是否存在λ,使得S△ACD=λS△BCD成立,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x0-1
2
4
y-2
2
1
16
-21
(1)求C1,C2的标准方程;
(2)设斜率不为0的动直线l与C1有且只有一个公共点P,且与C2的准线相交于点Q,试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.
(Ⅰ)若直线y=kx+1与函数y=lnx的图象相切,求实数k的值.
(Ⅱ)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体的三视图如图所示,则这个几何体的体积等于
 

查看答案和解析>>

同步练习册答案