精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CDAB=4,BC=CD=2,AA="2, " EE分别是棱ADAA的中点。

(1)设F是棱AB的中点,证明:直线EE//平面FCC
(2)证明:平面D1AC⊥平面BB1C1C

(1)证明见解析。
(2)证明见解析。

解析证明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,连接A1DC1F1CF1

因为AB=4,CD=2,且AB//CD,所以CD//A1F1,且CD=A1F1A1F1CD为平行四边形,所以CF1//A1D
又因为EE分别是棱ADAA的中点,所以EE1//A1D
所以CF1//EE1,又因为平面FCC平面FCC
所以直线EE//平面FCC
(2)连接AC,在直棱柱中,CC1⊥平面ABCDAC平面ABCD

所以CC1AC,因为底面ABCD为等腰梯形,AB=4,BC=2,
F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,
,△ACF为等腰三角形,且
所以ACBC,又因为BCCC1都在平面BB1C1C内且交于点C
所以AC⊥平面BB1C1C,而平面D1AC
所以平面D1AC⊥平面BB1C1C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案