精英家教网 > 高中数学 > 题目详情

【题目】【2015高考湖北(理)20】某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天产品的产量不超过产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利(单位:元)是一个随机变量.

)求的分布列和均值;

若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

【答案】的分布列为:

8160

10200

10800

0.3

0.5

0.2

;()0.973.

【解析】)设每天两种产品的生产数量分别为,相应的获利为

则有 (1)

目标函数为

时,(1)表示的平面区域如图1,三个顶点分别为

变形为

时,直线轴上的截距最大,

最大获利

时,(1)表示的平面区域如图2,三个顶点分别为

变形为

时,直线轴上的截距最大,

最大获利

时,(1)表示的平面区域如图3,

四个顶点分别为.

变形为

时,直线轴上的截距最大,

最大获利

故最大获利的分布列为

8160

10200

10800

0.3

0.5

0.2

因此,

)由()知,一天最大获利超过10000元的概率

由二项分布,3天中至少有1天最大获利超过10000元的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为(
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数

(1)求点的轨迹;

(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(xt)=xt2+bxt
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)当y=f(xt)与y=f(f(xt))有相同的值域时,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=5 + 的定义域为(
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|x≤2且x≠1}
D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(1)若椭圆的右焦点坐标为,求的值;

(2)由椭圆上不同三点构成三角形称为椭圆的内接三角形.若以为直角顶点的椭圆的内接等腰直角三角形恰有三个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴的直线与椭圆相交于两点.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 为棱上一动点, 为底面上一动点, 的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是

A. 棱柱 B. 棱台 C. 棱锥 D. 球的一部分

查看答案和解析>>

同步练习册答案